M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - APRIL 2013

MT 1817-ORDINARY DIFFERENTIAL EQUATIONS

Date: 03/05/2013
Dept. No. \square Max. : 100 Marks
Time : 9:00-12:00

Answer all questions. Each question carries 20 marks.

1. (a) If the Wronskian of two functions x_{1} and x_{2} on the interval I is not zero for atleast one point of I, then prove that the functions x_{1} and x_{2} are linearly independent on I.
(OR)
(b) Prove that $c_{1} t+c_{2} t^{2}+c_{3} t^{3}, t \geq 0$, is a solution of $t^{3} x^{\prime \prime \prime}(t)-3 t^{2} x^{\prime \prime}(t)+6 t x^{\prime}(t)-6 x(t)=0$.
(c) Prove that $u L(v)-v L(u)=a_{0}(t) \frac{d}{d t} W[u, v]+a_{1}(t) W[u, v]$, where u, v are twice differentiable functions and a_{0}, a_{1} are continuous on I. Also deduce Abel's formula.
(OR)
(d) By the method of variation of parameters, find the general solution of

$$
\begin{equation*}
x^{\prime \prime \prime}(t)-x^{\prime}(t)=e^{t} . \tag{15}
\end{equation*}
$$

2. (a) Find the indicial equation of $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+(3-x) y=0$.

> (OR)
(b) Find the indicial equation of $2 x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=0$.
(c) Solve by Frobenius method, $x(1-x) \frac{d^{2} y}{d x^{2}}+(1-x) \frac{d y}{d x}-y=0$.
(OR)
(d) Show that the generating function for the Legendre polynomial is

$$
\begin{equation*}
\frac{1}{\sqrt{1-2 t x+t^{2}}}=\sum_{n=0}^{\infty} t^{n} P_{n}(x) \text { if }|t|<1 \text { and }|x| \leq 1 . \tag{15}
\end{equation*}
$$

3. (a) State and prove Rodriguez's Formula.

> (OR)
(b) For the Bessel function, show that (i) $\frac{d}{d x}\left\{x^{n} J_{n}(x)\right\}=x^{n} J_{n-1}(x)$ and

$$
\begin{equation*}
J_{n}^{\prime}(x)=J_{n-1}(x)-\frac{n}{x} J_{n}(x) \tag{ii}
\end{equation*}
$$

(c) Solve the Bessel's equation, $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0$.

> (OR)
(d) State and prove the Integral representation of $2 \mathrm{~F}_{1}(\alpha ; \beta ; \gamma ; \mathrm{x})$.
4. (a) State and prove the sufficient condition for the validity of Lipschitz condition.
(OR)
(b) Let x and y be the solutions of Sturm-Liouville problem such that $[p W(x, y)]_{A}^{B}=0$, where $W(x$, $y)$ is the Wronskian of x and y. Prove that $\int_{A}^{B} r(s) x(s) y(s) d s=0$.
(c) State and prove Picard's theorem for boundary value problem.
(OR)
(d) State Green's function. Prove that $x(t)$ is a solution of $L(x(t))+f(t)=0, a \leq t \leq b$ if and only if $x(t)=\int_{a}^{b} G(t, s) f(s) d s$.
5. (a) Define a stable system. Prove that $x^{\prime}=0$ is stable.
(OR)
(b) Prove that the null solution of equation $x^{\prime}=A(t) x$ is stable if and only if a positive constant k exists such that $|\phi(t)| \leq k, t \geq t_{0}$.
(c) Discuss the stability of autonomous systems.
(OR)
(d) By Lyapunov direct method, discuss the stability of $x^{\prime}=A x$.

