LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034				
M.Sc. DEGREE EXAMINATION - MATHEMATICS				
FIRST SEMESTER – APRIL 2013				
MT 1817 - ORDINARY DIFFERENTIAL EQUATIONS				
	Date : 03/05/2013 Dept. No. Max. : Time : 9:00 - 12:00	100 Marks	5	
Answer all questions. Each question carries 20 marks.				
1.	. (a) If the Wronskian of two functions x_1 and x_2 on the interval <i>I</i> is not zero for atleast one point of <i>I</i> , then prove that the functions x_1 and x_2 are linearly independent on <i>I</i> . (OR)			
	(b) Prove that $c_1t + c_2t^2 + c_3t^3$, $t \ge 0$, is a solution of $t^3x'''(t) - 3t^2x''(t) + 6tx'(t) - 6x(t) = 0.$ (5))		
	(c) Prove that $uL(v) - vL(u) = a_0(t) \frac{d}{dt} W[u, v] + a_1(t) W[u, v]$, where <i>u</i> , <i>v</i> are twice differentiable functions and a_0 , a_1 are continuous on <i>I</i> . Also deduce Abel's formula. (OR)			
	(d) By the method of variation of parameters, find the general solution of $x'''(t) - x'(t) = e^t$.	(15)		
2.	(a) Find the indicial equation of $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + (3 - x)y = 0.$ (OR)			
	(b) Find the indicial equation of $2x \frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$.	(5)		
	(c) Solve by Frobenius method, $x(1-x)\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} - y = 0.$ (OR)			
	(d) Show that the generating function for the Legendre polynomial is $\frac{1}{\sqrt{1-2tx+t^2}} = \sum_{n=0}^{\infty} t^n P_n(x) \text{ if } t < 1 \text{ and } x \le 1.$	(15)		
3.	(a) State and prove Rodriguez's Formula. (OR)			
	(b) For the Bessel function, show that (i) $\frac{d}{dx} \{x^n J_n(x)\} = x^n J_{n-1}(x)$ and $J_n'(x) = J_{n-1}(x) - \frac{n}{x} J_n(x)$	(5)	(ii)	
	(c) Solve the Bessel's equation, $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0.$ (OR)			
	(d) State and prove the Integral representation of $2F_1(\alpha; \beta; \gamma; x)$.	(15)		
4.	(a) State and prove the sufficient condition for the validity of Lipschitz condition. (OR)			

(b) Let x and y be the solutions of Sturm-Liouville problem such that $[pW(x, y)]_A^B = 0$, where W(x, y) is the Wronskian of x and y. Prove that $\int_A^B r(s) x(s) y(s) ds = 0$. (5)

- (c) State and prove Picard's theorem for boundary value problem.
- (d) State Green's function. Prove that x(t) is a solution of L(x(t)) + f(t) = 0, $a \le t \le b$ if and only if $x(t) = \int_{a}^{b} G(t,s)f(s) ds.$ (15)

(OR)

5. (a) Define a stable system. Prove that x' = 0 is stable.

(OR)

- (b) Prove that the null solution of equation x' = A(t)x is stable if and only if a positive constant k exists such that $|\phi(t)| \le k, t \ge t_0$. (5)
- (c) Discuss the stability of autonomous systems.
- (OR) (d) By Lyapunov direct method, discuss the stability of x' = Ax. (15)
